Search results
Results from the WOW.Com Content Network
The Faraday paradox or Faraday's paradox is any experiment in which Michael Faraday's law of electromagnetic induction appears to predict an incorrect result. The paradoxes fall into two classes: Faraday's law appears to predict that there will be zero electromotive force (EMF) but there is a non-zero EMF.
Faraday paradox (electrochemistry): Diluted nitric acid will corrode steel, while concentrated nitric acid will not. Levinthal paradox : The length of time that it takes for a protein chain to find its folded state is many orders of magnitude shorter than it would be if it freely searched all possible configurations.
The Faraday paradox was a once inexplicable aspect of the reaction between nitric acid and steel. Around 1830, the English scientist Michael Faraday found that diluted nitric acid would attack steel, but concentrated nitric acid would not. [1] The attempt to explain this discovery led to advances in electrochemistry.
In the following, Hering's paradox is first shown experimentally in a video and -- in a similar way as suggested by Grabinski -- it is shown, that when carefully treated with full mathematical consistency, the experiment does not contradict Faraday's Law of Induction. Finally, the typical pitfalls of applying Faraday's Law are mentioned.
Faraday's law was later generalized to become the Maxwell–Faraday equation, one of the four Maxwell equations in his theory of electromagnetism. Electromagnetic induction has found many applications, including electrical components such as inductors and transformers , and devices such as electric motors and generators .
For Faraday's first law, M, F, v are constants; thus, the larger the value of Q, the larger m will be. For Faraday's second law, Q, F, v are constants; thus, the larger the value of (equivalent weight), the larger m will be. In the simple case of constant-current electrolysis, Q = It, leading to
big.assets.huffingtonpost.com
In the history of physics, a line of force in Michael Faraday's extended sense is synonymous with James Clerk Maxwell's line of induction. [1] According to J.J. Thomson, Faraday usually discusses lines of force as chains of polarized particles in a dielectric, yet sometimes Faraday discusses them as having an existence all their own as in stretching across a vacuum. [2]