enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).

  3. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    A similar result holds for compact groups (not necessarily abelian): the matrix coefficients of finite-dimensional unitary representations form an orthonormal basis in L 2 by the Peter–Weyl theorem, and an analog of the convolution theorem continues to hold, along with many other aspects of harmonic analysis that depend on the Fourier transform.

  4. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    As seen above, the discrete Fourier transform has the fundamental property of carrying convolution into componentwise product. A natural question is whether it is the only one with this ability. It has been shown [9] [10] that any linear transform that turns convolution into pointwise product is the DFT up to a permutation of coefficients ...

  5. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.

  6. Titchmarsh convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Titchmarsh_convolution_theorem

    The original proof by Titchmarsh uses complex-variable techniques, and is based on the Phragmén–Lindelöf principle, Jensen's inequality, Carleman's theorem, and Valiron's theorem. The theorem has since been proven several more times, typically using either real-variable [3] [4] [5] or complex-variable [6] [7] [8] methods.

  7. Convolution for optical broad-beam responses in scattering ...

    en.wikipedia.org/wiki/Convolution_for_optical...

    There are two common methods used to implement discrete convolution: the definition of convolution and fast Fourier transformation (FFT and IFFT) according to the convolution theorem. To calculate the optical broad-beam response, the impulse response of a pencil beam is convolved with the beam function.

  8. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  9. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Compression theorem (computational complexity theory, structural complexity theory) Conley–Zehnder theorem (dynamical systems) Conservativity theorem (mathematical logic) Constant chord theorem ; Constant rank theorem ( multivariate calculus) Continuous mapping theorem (probability theory) Convolution theorem (Fourier transforms)