Search results
Results from the WOW.Com Content Network
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The integral is evaluated for all values of shift, producing the convolution function.
The characteristic function + = ((+)) of the sum of two independent random variables X and Y is just the product of the two separate characteristic functions: = (), = ()
The Poisson summation formula is a particular case of the convolution theorem on tempered distributions. If one of the two factors is the Dirac comb , one obtains periodic summation on one side and sampling on the other side of the equation.
Fourier inversion theorem; Plancherel's theorem; Convolution; Convolution theorem; Positive-definite function; Poisson summation formula; Paley-Wiener theorem; Sobolev space; Time–frequency representation; Quantum Fourier transform
This theorem is proved by applying the inverse Laplace transform on the convolution theorem in form of the cross-correlation. Let f ( t ) {\displaystyle f(t)} be a function with bilateral Laplace transform F ( s ) {\displaystyle F(s)} in the strip of convergence α < ℜ s < β {\displaystyle \alpha <\Re s<\beta } .
The following is a pseudocode of the algorithm: (Overlap-add algorithm for linear convolution) h = FIR_filter M = length(h) Nx = length(x) N = 8 × 2^ceiling( log2(M) ) (8 times the smallest power of two bigger than filter length M.