Search results
Results from the WOW.Com Content Network
While cooling, the magma evolves in composition because different minerals crystallize from the melt. 1: olivine crystallizes; 2: olivine and pyroxene crystallize; 3: pyroxene and plagioclase crystallize; 4: plagioclase crystallizes. At the bottom of the magma reservoir, a cumulate rock forms.
When magma cools it begins to form solid mineral phases. Some of these settle at the bottom of the magma chamber forming cumulates that might form mafic layered intrusions. Magma that cools slowly within a magma chamber usually ends up forming bodies of plutonic rocks such as gabbro, diorite and granite, depending upon the composition of the magma.
While cooling, the magma evolves in composition because different minerals crystallize from the melt. 1: olivine crystallizes; 2: olivine and pyroxene crystallize; 3: pyroxene and plagioclase crystallize; 4: plagioclase crystallizes. At the bottom of the magma reservoir, a cumulate rock forms.
Magma exists in three main forms that vary in composition. [3] When magma crystallizes within the crust, it forms an extrusive igneous rock. Dependent on the composition of the magma, it may form either rhyolite, andesite, or basalt. [3] Volatiles, particularly water and carbon dioxide, significantly impact the behavior of each form of magma ...
Olivine occurs in both mafic and ultramafic igneous rocks and as a primary mineral in certain metamorphic rocks. Mg-rich olivine crystallizes from magma that is rich in magnesium and low in silica. That magma crystallizes to mafic rocks such as gabbro and basalt. [14]
Within the field of geology, Bowen's reaction series is the work of the Canadian petrologist Norman L. Bowen, [1] who summarized, based on experiments and observations of natural rocks, the sequence of crystallization of common silicate minerals from typical basaltic magma undergoing fractional crystallization (i.e. crystallization wherein early-formed crystals are removed from the magma by ...
While cooling, the magma evolves in composition because different minerals crystallize from the melt. 1: olivine crystallizes; 2: olivine and pyroxene crystallize; 3: pyroxene and plagioclase crystallize; 4: plagioclase crystallizes. At the bottom of the magma reservoir, a cumulate rock forms.
While the majority of quartz crystallizes from molten magma, quartz also chemically precipitates from hot hydrothermal veins as gangue, sometimes with ore minerals like gold, silver and copper. Large crystals of quartz are found in magmatic pegmatites. [22]