enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    Logistic regression typically optimizes the log loss for all the observations on which it is trained, which is the same as optimizing the average cross-entropy in the sample. Other loss functions that penalize errors differently can be also used for training, resulting in models with different final test accuracy. [7]

  3. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    It's easy to check that the logistic loss and binary cross-entropy loss (Log loss) are in fact the same (up to a multiplicative constant ⁡ ()). The cross-entropy loss is closely related to the Kullback–Leibler divergence between the empirical distribution and the predicted distribution.

  4. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    Such networks are commonly trained under a log loss (or cross-entropy) regime, giving a non-linear variant of multinomial logistic regression. Since the function maps a vector and a specific index i {\displaystyle i} to a real value, the derivative needs to take the index into account:

  5. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Entropy (thermodynamics) Cross entropy – is a measure of the average number of bits needed to identify an event from a set of possibilities between two probability distributions; Entropy (arrow of time) Entropy encoding – a coding scheme that assigns codes to symbols so as to match code lengths with the probabilities of the symbols. Entropy ...

  6. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Log loss is always greater than or equal to 0, equals 0 only in case of a perfect prediction (i.e., when = and =, or = and =), and approaches infinity as the prediction gets worse (i.e., when = and or = and ), meaning the actual outcome is "more surprising". Since the value of the logistic function is always strictly between zero and one, the ...

  7. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.

  8. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    The entropy () thus sets a minimum value for the cross-entropy (,), the expected number of bits required when using a code based on Q rather than P; and the Kullback–Leibler divergence therefore represents the expected number of extra bits that must be transmitted to identify a value x drawn from X, if a code is used corresponding to the ...

  9. Perplexity - Wikipedia

    en.wikipedia.org/wiki/Perplexity

    The lowest perplexity that had been published on the Brown Corpus (1 million words of American English of varying topics and genres) as of 1992 is indeed about 247 per word/token, corresponding to a cross-entropy of log 2 247 = 7.95 bits per word or 1.75 bits per letter [5] using a trigram model. While this figure represented the state of the ...