Search results
Results from the WOW.Com Content Network
Energy density per unit mass J⋅kg −1: L 2 T −2: intensive Specific heat capacity: c: Heat capacity per unit mass J/(K⋅kg) L 2 T −2 Θ −1: intensive Specific volume: v: Volume per unit mass (reciprocal of density) m 3 ⋅kg −1: L 3 M −1: intensive Spin: S: Quantum-mechanically defined angular momentum of a particle kg⋅m 2 ⋅s ...
joule per kilogram per kelvin (J⋅kg −1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s) electric displacement field also called the electric flux density coulomb per square meter (C/m 2) density: kilogram per cubic meter (kg/m 3) diameter: meter (m) distance: meter (m) direction
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
The shed is a unit of area used in nuclear physics equal to 10 −24 barns (100 rm 2 = 10 −52 m 2). The outhouse is a unit of area used in nuclear physics equal to 10 −6 barns (100 am 2 = 10 −34 m 2). The barn (b) is a unit of area used in nuclear physics equal to one hundred femtometres squared (100 fm 2 = 10 −28 m 2).
= 1000 kg/m 3: kilogram per cubic metre (SI unit) kg/m 3: ≡ kg/m 3 = 1 kg/m 3: kilogram per litre kg/L ≡ kg/L = 1000 kg/m 3: ounce (avoirdupois) per cubic foot oz/ft 3: ≡ oz/ft 3: ≈ 1.001 153 961 kg/m 3: ounce (avoirdupois) per cubic inch oz/in 3: ≡ oz/in 3: ≈ 1.729 994 044 × 10 3 kg/m 3: ounce (avoirdupois) per gallon (imperial ...
A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value ...
"The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J s, which is equal to kg m 2 s −1, where the metre and the second are defined in terms of c and ∆ν Cs." [1] The mass of one litre of water at the temperature ...