enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Importance sampling - Wikipedia

    en.wikipedia.org/wiki/Importance_sampling

    Importance sampling is a Monte Carlo method for evaluating properties of a particular distribution, while only having samples generated from a different distribution than the distribution of interest.

  3. Cross-entropy method - Wikipedia

    en.wikipedia.org/wiki/Cross-Entropy_Method

    The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.

  4. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    The best-known importance sampling method, the Metropolis algorithm, can be generalized, and this gives a method that allows analysis of (possibly highly nonlinear) inverse problems with complex a priori information and data with an arbitrary noise distribution.

  5. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    A visual representation of the sampling process. In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole ...

  6. Exponential tilting - Wikipedia

    en.wikipedia.org/wiki/Exponential_tilting

    Exponential Tilting (ET), Exponential Twisting, or Exponential Change of Measure (ECM) is a distribution shifting technique used in many parts of mathematics. The different exponential tiltings of a random variable is known as the natural exponential family of .

  7. Variance reduction - Wikipedia

    en.wikipedia.org/wiki/Variance_reduction

    For simulation with black-box models subset simulation and line sampling can also be used. Under these headings are a variety of specialized techniques; for example, particle transport simulations make extensive use of "weight windows" and "splitting/Russian roulette" techniques, which are a form of importance sampling.

  8. Monte Carlo integration - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_integration

    Importance sampling provides a very important tool to perform Monte-Carlo integration. [ 3 ] [ 8 ] The main result of importance sampling to this method is that the uniform sampling of x ¯ {\displaystyle {\overline {\mathbf {x} }}} is a particular case of a more generic choice, on which the samples are drawn from any distribution p ( x ...

  9. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...