Search results
Results from the WOW.Com Content Network
Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant. This transport process is called translocation. [2]
In the stems of some Asterales dicots, there may be phloem located inwardly from the xylem as well. Between the xylem and phloem is a meristem called the vascular cambium. This tissue divides off cells that will become additional xylem and phloem. This growth increases the girth of the plant, rather than its length.
The cambium present between primary xylem and primary phloem is called the intrafascicular cambium (within vascular bundles). During secondary growth, cells of medullary rays, in a line (as seen in section; in three dimensions, it is a sheet) between neighbouring vascular bundles, become meristematic and form new interfascicular cambium ...
It is different from the main vascular cambium, which is the ring between the wood on the inside (top) and the red bast outside it. Cork cambium (pl.: cambia or cambiums) is a tissue found in many vascular plants as a part of the epidermis. It is one of the many layers of bark, between the cork and primary phloem.
The movement of water out of the leaf stomata sets up transpiration pull or tension in the water column in the xylem vessels or tracheids. The pull is the result of water surface tension within the cell walls of the mesophyll cells, from the surfaces of which evaporation takes place when the stomata are open.
Sieve elements are specialized cells that are important for the function of phloem, which is a highly organized tissue that transports organic compounds made during photosynthesis. Sieve elements are the major conducting cells in phloem. Conducting cells aid in transport of molecules especially for long-distance signaling.
A vein is made up of a vascular bundle. At the core of each bundle are clusters of two distinct types of conducting cells: Xylem Cells that bring water and minerals from the roots into the leaf. Phloem Cells that usually move sap, with dissolved sucrose (glucose to sucrose) produced by photosynthesis in the leaf, out of the leaf.
The process for this is retting, and can be performed by micro-organisms either on land (nowadays the most important) or in water, or by chemicals (for instance high pH and chelating agents), or by pectinolytic enzymes. In the phloem, bast fibres occur in bundles that are glued together by pectin and calcium ions. More intense retting separates ...