Search results
Results from the WOW.Com Content Network
The internal tidal energy in one tidal period going through an area perpendicular to the direction of propagation is called the energy flux and is measured in Watts/m. The energy flux at one point can be summed over depth- this is the depth-integrated energy flux and is measured in Watts/m.
W′ is the envelope (common tangent surface), on the forward side of W, of all the secondary wavefronts each of which would expand in time Δt from a point on W, and; if the secondary wavefront expanding from point P in time Δt touches the surface W′ at point P′, then P and P′ lie on a ray.
A so-called eigenmode is a solution that oscillates in time with a well-defined constant angular frequency ω, so that the temporal part of the wave function takes the form e −iωt = cos(ωt) − i sin(ωt), and the amplitude is a function f(x) of the spatial variable x, giving a separation of variables for the wave function: (,) = ().
For the shown case, a bichromatic group of gravity waves on the surface of deep water, the group velocity is half the phase velocity. In this example, there are 5 + 3 / 4 waves between two wave group nodes in space, while there are 11 + 1 / 2 waves between two wave group nodes in time.
This earlier time in which an event happens such that a particle at location r 'sees' this event at a later time t is called the retarded time, t r. The retarded time varies with position; for example the retarded time at the Moon is 1.5 seconds before the current time and the retarded time on the Sun is 500 s before the current time on the Earth.
The tidal force corresponds to the difference in Y between two points on the graph, with one point on the near side of the body, and the other point on the far side. The tidal force becomes larger, when the two points are either farther apart, or when they are more to the left on the graph, meaning closer to the attracting body.
is the time between two events as measured in the moving reference frame in which they occur at the same place (e.g. two ticks on a moving clock); it is called the proper time between the two events; t is the time between these same two events, but as measured in the stationary reference frame;
Localized time-varying charge and current densities can act as sources of electromagnetic waves in a vacuum. Maxwell's equations can be written in the form of a wave equation with sources. The addition of sources to the wave equations makes the partial differential equations inhomogeneous.