enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  3. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !

  4. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    For other stencil configurations and derivative orders, the Finite Difference Coefficients Calculator is a tool that can be used to generate derivative approximation methods for any stencil with any derivative order (provided a solution exists).

  5. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  6. Midpoint method - Wikipedia

    en.wikipedia.org/wiki/Midpoint_method

    However, if the second derivative is only positive between and +, or only negative (as in the diagram), the curve will increasingly veer away from the tangent, leading to larger errors as increases. The diagram illustrates that the tangent at the midpoint (upper, green line segment) would most likely give a more accurate approximation of the ...

  7. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.

  8. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:

  9. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution y 1 ( x ) {\displaystyle y_{1}(x)} is known and a second linearly independent solution y 2 ( x ) {\displaystyle y_{2}(x)} is desired.