enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dilation (metric space) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(metric_space)

    In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]

  3. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities; List of volume formulas – Quantity of three-dimensional space

  4. Mathematical morphology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_morphology

    Mathematical Morphology was developed in 1964 by the collaborative work of Georges Matheron and Jean Serra, at the École des Mines de Paris, France.Matheron supervised the PhD thesis of Serra, devoted to the quantification of mineral characteristics from thin cross sections, and this work resulted in a novel practical approach, as well as theoretical advancements in integral geometry and ...

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Castelnuovo–de Franchis theorem (algebraic geometry) Chow's theorem (algebraic geometry) Cramer's theorem (algebraic curves) (analytic geometry) Hartogs's theorem (complex analysis) Hartogs's extension theorem (several complex variables) Hirzebruch–Riemann–Roch theorem (complex manifolds) Kawamata–Viehweg vanishing theorem (algebraic ...

  6. Dilation (morphology) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(morphology)

    Dilation (usually represented by ⊕) is one of the basic operations in mathematical morphology. Originally developed for binary images, it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.

  7. Truncus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Truncus_(mathematics)

    In analytic geometry, a truncus is a curve in the Cartesian plane consisting of all points (x,y) satisfying an equation of the form A mathematical graph of the basic truncus formula, marked in blue, with domain and range both restricted to [-5, 5]. = (+) + where a, b, and c are given constants.

  8. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    In this case in all formulas below all arguments in θ should have sine and cosine exchanged, and as derivative also a plus and minus exchanged. All divisions by zero result in special cases of being directions along one of the main axes and are in practice most easily solved by observation.

  9. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.