enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.

  3. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its zeros. Every rational function is meromorphic on the whole Riemann sphere, and, in this case, the sum of orders of the zeros or of the poles is the maximum ...

  4. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    This can be seen in the following tables, the left of which shows Newton's method applied to the above f(x) = x + x 4/3 and the right of which shows Newton's method applied to f(x) = x + x 2. The quadratic convergence in iteration shown on the right is illustrated by the orders of magnitude in the distance from the iterate to the true root (0,1 ...

  6. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The only one on the positive real axis is the unique minimum of the real-valued gamma function on R + at x 0 = 1.461 632 144 968 362 341 26.... All others occur single between the poles on the negative axis: x 1 = −0.504 083 008 264 455 409 25... x 2 = −1.573 498 473 162 390 458 77... x 3 = −2.610 720 868 444 144 650 00... x 4 = −3.635 ...

  7. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    Owing to the zeros of the sine function, the functional equation implies that ζ(s) has a simple zero at each even negative integer s = −2n, known as the trivial zeros of ζ(s). When s is an even positive integer, the product sin( ⁠ π s / 2 ⁠ ) Γ(1 − s ) on the right is non-zero because Γ(1 − s ) has a simple pole , which cancels ...

  8. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    A. M. Odlyzko computed a 175 million zeros of heights around 10 20 and a few more of heights around 2 × 10 20, and gave an extensive discussion of the results. 1998 10000 of large (≈10 21) height A. M. Odlyzko computed some zeros of height about 10 21: 2001 10 10: J. van de Lune (unpublished) 2004 ≈9 × 10 11 [32]

  9. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference between the root count and the sign change count is always even. In particular, when the number of sign changes is zero or one, then there are exactly zero or one positive roots.