enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Link prediction - Wikipedia

    en.wikipedia.org/wiki/Link_prediction

    The task of link prediction has attracted attention from several research communities ranging from statistics and network science to machine learning and data mining.In statistics, generative random graph models such as stochastic block models propose an approach to generate links between nodes in a random graph.

  3. Queueing theory - Wikipedia

    en.wikipedia.org/wiki/Queueing_theory

    The main queueing models that can be used are the single-server waiting line system and the multiple-server waiting line system, which are discussed further below. These models can be further differentiated depending on whether service times are constant or undefined, the queue length is finite, the calling population is finite, etc. [5]

  4. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    One prominent example is molecular drug design. [6] [7] [8] Each input sample is a graph representation of a molecule, where atoms form the nodes and chemical bonds between atoms form the edges. In addition to the graph representation, the input also includes known chemical properties for each of the atoms.

  5. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    The machine learning task for knowledge graph embedding that is more often used to evaluate the embedding accuracy of the models is the link prediction. [ 1 ] [ 3 ] [ 5 ] [ 6 ] [ 7 ] [ 18 ] Rossi et al. [ 5 ] produced an extensive benchmark of the models, but also other surveys produces similar results.

  6. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. Graphical models are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.

  7. Algorithmic learning theory - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_learning_theory

    Algorithmic learning theory investigates the learning power of Turing machines. Other frameworks consider a much more restricted class of learning algorithms than Turing machines, for example, learners that compute hypotheses more quickly, for instance in polynomial time.

  8. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  9. Conditional random field - Wikipedia

    en.wikipedia.org/wiki/Conditional_random_field

    If the graph is a chain or a tree, message passing algorithms yield exact solutions. The algorithms used in these cases are analogous to the forward-backward and Viterbi algorithm for the case of HMMs. If the CRF only contains pair-wise potentials and the energy is submodular, combinatorial min cut/max flow algorithms yield exact solutions.