enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.

  3. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    It is possible to do a calculation of likelihood ratios for tests with continuous values or more than two outcomes which is similar to the calculation for dichotomous outcomes. For this purpose, a separate likelihood ratio is calculated for every level of test result and is called interval or stratum specific likelihood ratios. [4]

  4. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.

  5. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The finite-sample distributions of likelihood-ratio statistics are generally unknown. [ 10 ] The likelihood-ratio test requires that the models be nested – i.e. the more complex model can be transformed into the simpler model by imposing constraints on the former's parameters.

  6. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    There is nothing magical about a sample size of 1 000, it's just a nice round number that is well within the range where an exact test, chi-square test, and G–test will give almost identical p values. Spreadsheets, web-page calculators, and SAS shouldn't have any problem doing an exact test on a sample size of 1 000 . — John H. McDonald [2]

  7. Likelihood principle - Wikipedia

    en.wikipedia.org/wiki/Likelihood_principle

    In statistics, the likelihood principle is the proposition that, given a statistical model, all the evidence in a sample relevant to model parameters is contained in the likelihood function. A likelihood function arises from a probability density function considered as a function of its distributional parameterization argument.

  8. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    To compare effect sizes of the interactions between the variables, odds ratios are used. Odds ratios are preferred over chi-square statistics for two main reasons: [1] 1. Odds ratios are independent of the sample size; 2. Odds ratios are not affected by unequal marginal distributions.

  9. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    For example: If the null model has 1 parameter and a log-likelihood of −8024 and the alternative model has 3 parameters and a log-likelihood of −8012, then the probability of this difference is that of chi-squared value of (()) = with = degrees of freedom, and is equal to .