Search results
Results from the WOW.Com Content Network
As mentioned above, rows 1, 2, and 4 of G should look familiar as they map the data bits to their parity bits: p 1 covers d 1, d 2, d 4; p 2 covers d 1, d 3, d 4; p 3 covers d 2, d 3, d 4; The remaining rows (3, 5, 6, 7) map the data to their position in encoded form and there is only 1 in that row so it is an identical copy.
The codewords in a linear block code are blocks of symbols that are encoded using more symbols than the original value to be sent. [2] A linear code of length n transmits blocks containing n symbols. For example, the [7,4,3] Hamming code is a linear binary code which represents 4-bit messages using 7-bit codewords. Two distinct codewords differ ...
With respect to general linear maps, linear endomorphisms and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other part of mathematics.
linear algebra The branch of mathematics that deals with vectors, vector spaces, linear transformations and systems of linear equations. linear combination A sum, each of whose summands is an appropriate vector times an appropriate scalar (or ring element). [6] linear dependence
This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices. Linear equations
Chapter 5 studies cyclic codes and Chapter 6 studies a special case of cyclic codes, the quadratic residue codes. Chapter 7 returns to BCH codes. [1] [6] After these discussions of specific codes, the next chapter concerns enumerator polynomials, including the MacWilliams identities, Pless's own power moment identities, and the Gleason ...
In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n-matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1)-submatrices of B.
In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination.