Search results
Results from the WOW.Com Content Network
In thermodynamics, an isochoric process, also called a constant-volume process, an isovolumetric process, or an isometric process, is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant. An isochoric process is exemplified by the heating or the cooling of the contents of a sealed ...
An isochoric process however operates at a constant-volume, thus no work can be produced. Many other thermodynamic processes will result in a change in volume. A polytropic process , in particular, causes changes to the system so that the quantity p V n {\displaystyle pV^{n}} is constant (where p {\displaystyle p} is pressure, V {\displaystyle ...
According to the first section above, an heating for a solid can not be a isochoric, so the pressure change in a non-isochoric heating process is not exactly the thermal pressure. When a solid is loaded with a pressure gauge, and heated/compressed together at high P - T , the thermal pressure of the solid does not equal that of its gauge.
A quasi-static thermodynamic process can be visualized by graphically plotting the path of idealized changes to the system's state variables. In the example, a cycle consisting of four quasi-static processes is shown. Each process has a well-defined start and end point in the pressure-volume state space.
Others are inhomogeneous systems that do not meet the strict definition of thermodynamic equilibrium. They include gravitating objects such as stars and galaxies, and also some nano-scale clusters of a few tens of atoms close to a phase transition. [10] A negative heat capacity can result in a negative temperature.
Like the specific heat, the measured molar heat capacity of a substance, especially a gas, may be significantly higher when the sample is allowed to expand as it is heated (at constant pressure, or isobaric) than when it is heated in a closed vessel that prevents expansion (at constant volume, or isochoric).
Isochoric may refer to: cell-transitive, in geometry; isochoric process, a constant volume process in chemistry or thermodynamics; Isochoric model
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".