Search results
Results from the WOW.Com Content Network
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.
In mathematics, convergence tests are methods to determine if an infinite series converges or diverges. Pages in category "Convergence tests" The following 17 pages are in this category, out of 17 total.
In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .
The cover of a test booklet for Raven's Standard Progressive Matrices. Raven's Progressive Matrices (often referred to simply as Raven's Matrices) or RPM is a non-verbal test typically used to measure general human intelligence and abstract reasoning and is regarded as a non-verbal estimate of fluid intelligence. [1]
For example, in order to test the convergent validity of a measure of self-esteem, a researcher may want to show that measures of similar constructs, such as self-worth, confidence, social skills, and self-appraisal are also related to self-esteem, whereas non-overlapping factors, such as intelligence, should not relate.
The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.
In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence f ( n ) {\displaystyle f(n)} of non-negative real numbers , the series ∑ n = 1 ∞ f ( n ) {\textstyle \sum \limits _{n=1}^{\infty }f(n)} converges if and only if the "condensed ...
In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.