Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
A wealth of new information about Earth’s inner core has surfaced in recent months. Scientists now have evidence that the planet’s innermost layer is changing shape.
The magnetosphere contains charged particles that are trapped from the stellar wind, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles. [13] As stars emit matter with a stellar wind from the photosphere, the magnetosphere creates a torque on the ejected matter.
The "very nearly" qualifier sets it apart from true constants of motion, such as energy, reducing it to merely an "adiabatic invariant." For most plasmas in the magnetosphere, the deviation from constancy is negligible. [citation needed] The conservation of μ is tremendously important (in laboratory plasmas as well as in space).
The radius of the outer core is about half of the radius of the Earth. If the field at the core-mantle boundary is fit to spherical harmonics, the dipole part is smaller by a factor of about 8 at the surface, the quadrupole part by a factor of 16, and so on. Thus, only the components with large wavelengths can be noticeable at the surface.
The average magnetic field strength in Earth's outer core is estimated to be 2.5 millitesla, 50 times stronger than the magnetic field at the surface. [9] [10] As Earth's core cools, the liquid at the inner core boundary freezes, causing the solid inner core to grow at the expense of the outer core, at an estimated rate of 1 mm per year.
Magnetic north versus ‘true north’ At the top of the world in the middle of the Arctic Ocean lies the geographic North Pole, the point where all the lines of longitude that curve around Earth ...
The primary agent driving these processes is the movement of Earth's tectonic plates, which creates mountains, volcanoes, and ocean basins. The inner core of the Earth contains liquid iron, which is an important factor in the geosphere as well as the magnetosphere. [3]