Search results
Results from the WOW.Com Content Network
A mixed diet of fat and carbohydrate results in an average value between these numbers. RQ value corresponds to a caloric value for each liter (L) of CO 2 produced. If O 2 consumption numbers are available, they are usually used directly, since they are more direct and reliable estimates of energy production.
In the early 1970s, computer technology enabled on-site data processing, some real-time analysis, and even graphical displays of metabolic variables, such as O 2, CO 2, and air-flow, thereby encouraging academic institutions to test accuracy and precision in new ways.
Respirometry depends on a "what goes in must come out" principle. [6] Consider a closed system first. Imagine that we place a mouse into an air-tight container. The air sealed in the container initially contains the same composition and proportions of gases that were present in the room: 20.95% O 2, 0.04% CO 2, water vapor (the exact amount depends on air temperature, see dew point), 78% ...
Reference ranges (reference intervals) for blood tests are sets of values used by a health professional to interpret a set of medical test results from blood samples. Reference ranges for blood tests are studied within the field of clinical chemistry (also known as "clinical biochemistry", "chemical pathology" or "pure blood chemistry"), the ...
If the likelihood ratio for a test in a population is not clearly better than one, the test will not provide good evidence: the post-test probability will not be meaningfully different from the pretest probability. Knowing or estimating the likelihood ratio for a test in a population allows a clinician to better interpret the result. [7]
The RMR may be somewhat difficult to interpret, however, as its range is based on the scales of the indicators in the model (this becomes tricky when you have multiple indicators with varying scales; e.g., two questionnaires, one on a 0–10 scale, the other on a 1–3 scale). [1]
The metabolic equivalent of task (MET) is the objective measure of the ratio of the rate at which a person expends energy, relative to the mass of that person, while performing some specific physical activity compared to a reference, currently set by convention at an absolute 3.5 mL of oxygen per kg per minute, which is the energy expended when sitting quietly by a reference individual, chosen ...
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.