enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleon magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nucleon_magnetic_moment

    The magnetic moment of the proton was discovered in 1933 by Otto Stern, Otto Robert Frisch and Immanuel Estermann at the University of Hamburg. [15] [16] [17] The proton's magnetic moment was determined by measuring the deflection of a beam of molecular hydrogen by a magnetic field. [18] Stern won the Nobel Prize in Physics in 1943 for this ...

  3. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    The nuclear magnetic moment of neutrons and protons is partly predicted by this simple version of the shell model. The magnetic moment is calculated through j, ℓ and s of the "last" nucleon, but nuclei are not in states of well-defined ℓ and s. Furthermore, for odd-odd nuclei, one has to consider the two "last" nucleons, as in deuterium.

  4. Nuclear magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_moment

    According to the shell model, protons or neutrons tend to form pairs of opposite total angular momentum.Therefore, the magnetic moment of a nucleus with even numbers of each protons and neutrons is zero, while that of a nucleus with an odd number of protons and even number of neutrons (or vice versa) will have to be that of the remaining unpaired nucleon.

  5. Electron magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Electron_magnetic_moment

    In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]

  6. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    While the magnetic moments (the black arrows) are oriented the same for both cases of γ, the precession is in opposite directions. Spin and magnetic moment are in the same direction for γ > 0 (as for protons). Protons, neutrons, and many nuclei carry nuclear spin, which gives rise to a gyromagnetic ratio as above. The ratio is conventionally ...

  7. Nuclear structure - Wikipedia

    en.wikipedia.org/wiki/Nuclear_structure

    A nucleus with full shells is exceptionally stable, as will be explained. As with electrons in the electron shell model, protons in the outermost shell are relatively loosely bound to the nucleus if there are only few protons in that shell, because they are farthest from the center of the nucleus. Therefore, nuclei which have a full outer ...

  8. Orders of magnitude (magnetic moment) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Magnetic moment strength (from lower to higher orders of magnitude) Factor (m 2 ⋅A) Value Item 10 −45: 9.0877 × 10 −45 m 2 ⋅A [1] Unit of magnetic moment in the Planck system of units. 10 −27: 4.330 7346 × 10 −27 m 2 ⋅A: Magnetic moment of a deuterium nucleus 10 −26: 1.410 6067 × 10 −26 m 2 ⋅A: Magnetic moment of a proton ...

  9. Zeeman effect - Wikipedia

    en.wikipedia.org/wiki/Zeeman_effect

    The total Hamiltonian of an atom in a magnetic field is = +, where is the unperturbed Hamiltonian of the atom, and is the perturbation due to the magnetic field: =, where is the magnetic moment of the atom. The magnetic moment consists of the electronic and nuclear parts; however, the latter is many orders of magnitude smaller and will be ...