Search results
Results from the WOW.Com Content Network
Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [ 1 ]
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
Given the data, one must estimate the true position (probably by averaging). This problem would now be considered one of inferential statistics. The terms "direct probability" and "inverse probability" were in use until the middle part of the 20th century, when the terms "likelihood function" and "posterior distribution" became prevalent.
In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, [1] is a method for estimating the total [2] and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the target population.
Adjusting for unequal probability selection through "individual case weights" (e.g. inverse probability weighting), yields various types of estimators for quantities of interest. Estimators such as Horvitz–Thompson estimator yield unbiased estimators (if the selection probabilities are indeed known, or approximately known), for total and the ...
where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).
L-moments are statistical quantities that are derived from probability weighted moments [12] (PWM) which were defined earlier (1979). [8] PWM are used to efficiently estimate the parameters of distributions expressable in inverse form such as the Gumbel, [9] the Tukey lambda, and the Wakeby distributions.
In probability theory and statistics, an inverse distribution is the distribution of the reciprocal of a random variable. Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters .