enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  3. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]

  4. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    The imaginary unit i in the complex plane: Real numbers are conventionally drawn on the horizontal axis, and imaginary numbers on the vertical axis.. The imaginary unit or unit imaginary number (i) is a mathematical constant that is a solution to the quadratic equation x 2 + 1 = 0.

  5. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}

  6. Baker's theorem - Wikipedia

    en.wikipedia.org/wiki/Baker's_theorem

    Baker's Theorem — If , …, are linearly independent over the rational numbers, then for any algebraic numbers , …,, not all zero, we have | + + + | > where H is the maximum of the heights of and C is an effectively computable number depending on n, and the maximum d of the degrees of . (If β 0 is nonzero then the assumption that are linearly independent can be dropped.)

  7. Class number problem - Wikipedia

    en.wikipedia.org/wiki/Class_number_problem

    For given low class number (such as 1, 2, and 3), Gauss gives lists of imaginary quadratic fields with the given class number and believes them to be complete. Infinitely many real quadratic fields with class number one Gauss conjectures that there are infinitely many real quadratic fields with class number one.

  8. Category:Complex numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Complex_numbers

    The complex numbers contain a number i, the imaginary unit, with i 2 = −1, i.e., i is a square root of −1. Every complex number can be represented in the form x + iy, where x and y are real numbers called the real part and the imaginary part of the complex number respectively.

  9. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.