enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bose–Einstein condensate - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_condensate

    The same team demonstrated in 2017 the first creation of a Bose–Einstein condensate in space [73] and it is also the subject of two upcoming experiments on the International Space Station. [74] [75] Researchers in the new field of atomtronics use the properties of Bose–Einstein condensates in the emerging quantum technology of matter-wave ...

  3. Bose gas - Wikipedia

    en.wikipedia.org/wiki/Bose_gas

    The Bose gas is the most simple quantitative model that explains this phase transition. Mainly when a gas of bosons is cooled down, it forms a Bose–Einstein condensate, a state where a large number of bosons occupy the lowest energy, the ground state, and quantum effects are macroscopically visible like wave interference.

  4. Bose–Einstein statistics - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_statistics

    Both Fermi–Dirac and Bose–Einstein become Maxwell–Boltzmann statistics at high temperature or at low concentration. Bose–Einstein statistics was introduced for photons in 1924 by Bose and generalized to atoms by Einstein in 1924–25. The expected number of particles in an energy state i for Bose–Einstein statistics is:

  5. Condensed matter physics - Wikipedia

    en.wikipedia.org/wiki/Condensed_matter_physics

    The first Bose–Einstein condensate observed in a gas of ultracold rubidium atoms. The blue and white areas represent higher density. The blue and white areas represent higher density. Ultracold atom trapping in optical lattices is an experimental tool commonly used in condensed matter physics, and in atomic, molecular, and optical physics .

  6. List of states of matter - Wikipedia

    en.wikipedia.org/wiki/List_of_states_of_matter

    Bose–Einstein condensate: A phase in which a large number of bosons all inhabit the same quantum state, in effect becoming one single wave/particle. This is a low-energy phase that can only be formed in laboratory conditions and at very low temperatures. It must be close to absolute zero.

  7. Superfluid vacuum theory - Wikipedia

    en.wikipedia.org/wiki/Superfluid_vacuum_theory

    Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable background) is considered as a superfluid or as a Bose–Einstein condensate (BEC).

  8. Bianconi–Barabási model - Wikipedia

    en.wikipedia.org/wiki/Bianconi–Barabási_model

    As a result, at very low energies (or temperatures), a great majority of the bosons in a Bose gas can be crowded into the lowest energy state, creating a Bose–Einstein condensate. Bose and Einstein have established that the statistical properties of a Bose gas are governed by the Bose–Einstein statistics. In Bose–Einstein statistics, any ...

  9. Gas in a box - Wikipedia

    en.wikipedia.org/wiki/Gas_in_a_box

    Using the results from either Maxwell–Boltzmann statistics, Bose–Einstein statistics or Fermi–Dirac statistics, and considering the limit of a very large box, the Thomas–Fermi approximation (named after Enrico Fermi and Llewellyn Thomas) is used to express the degeneracy of the energy states as a differential, and summations over states ...