enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bose–Einstein condensate - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_condensate

    The same team demonstrated in 2017 the first creation of a Bose–Einstein condensate in space [73] and it is also the subject of two upcoming experiments on the International Space Station. [74] [75] Researchers in the new field of atomtronics use the properties of Bose–Einstein condensates in the emerging quantum technology of matter-wave ...

  3. Bose–Einstein condensation of polaritons - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein...

    Bose–Einstein condensation of polaritons is a growing field in semiconductor optics research, which exhibits spontaneous coherence similar to a laser, but through a different mechanism. A continuous transition from polariton condensation to lasing can be made similar to that of the crossover from a Bose–Einstein condensate to a BCS state in ...

  4. Bose–Einstein statistics - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_statistics

    Both Fermi–Dirac and Bose–Einstein become Maxwell–Boltzmann statistics at high temperature or at low concentration. Bose–Einstein statistics was introduced for photons in 1924 by Bose and generalized to atoms by Einstein in 1924–25. The expected number of particles in an energy state i for Bose–Einstein statistics is:

  5. Condensed matter physics - Wikipedia

    en.wikipedia.org/wiki/Condensed_matter_physics

    The first Bose–Einstein condensate observed in a gas of ultracold rubidium atoms. The blue and white areas represent higher density. The blue and white areas represent higher density. Ultracold atom trapping in optical lattices is an experimental tool commonly used in condensed matter physics, and in atomic, molecular, and optical physics .

  6. Bose–Einstein correlations - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_correlations

    The most general theoretical formalism for Bose–Einstein correlations in subnuclear physics is the quantum statistical approach, [10] [11] based on the classical current [12] and coherent state, [13] [14] formalism: it includes quantum coherence, correlation lengths and correlation times.

  7. Quantum optics - Wikipedia

    en.wikipedia.org/wiki/Quantum_optics

    Today's fields of interest among quantum optics researchers include parametric down-conversion, parametric oscillation, even shorter (attosecond) light pulses, use of quantum optics for quantum information, manipulation of single atoms, Bose–Einstein condensates, their application, and how to manipulate them (a sub-field often called atom ...

  8. Superfluid vacuum theory - Wikipedia

    en.wikipedia.org/wiki/Superfluid_vacuum_theory

    Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable background) is considered as a superfluid or as a Bose–Einstein condensate (BEC).

  9. Bose–Einstein condensation of quasiparticles - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein...

    Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed.