enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    For a given volume, the right circular cylinder with the smallest surface area has h = 2r. Equivalently, for a given surface area, the right circular cylinder with the largest volume has h = 2r, that is, the cylinder fits snugly in a cube of side length = altitude ( = diameter of base circle). [8]

  3. Ungula - Wikipedia

    en.wikipedia.org/wiki/Ungula

    Note how the surface area of the side wall is related to the volume: such surface area being , multiplying it by gives the volume of a differential half-shell, whose integral is , the volume. When the slope k equals 1 then such ungula is precisely one eighth of a bicylinder , whose volume is 16 3 r 3 {\displaystyle {16 \over 3}r^{3}} .

  4. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    The equilateral cylinder is characterized by being a right circular cylinder in which the diameter of the base is equal to the value of the height (geratrix). [ 4 ] Then, assuming that the radius of the base of an equilateral cylinder is r {\displaystyle r\,} then the diameter of the base of this cylinder is 2 r {\displaystyle 2r\,} and its ...

  5. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...

  6. Cylindrical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_coordinate_system

    The three surfaces intersect at the point P with those coordinates (shown as a black sphere); the Cartesian coordinates of P are roughly (1.0, −1.732, 1.0). Cylindrical coordinate surfaces. The three orthogonal components, ρ (green), φ (red), and z (blue), each increasing at a constant rate. The point is at the intersection between the ...

  7. Volume - Wikipedia

    en.wikipedia.org/wiki/Volume

    1. A cone and a cylinder have radius r and height h. 2. The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.

  8. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    Within the cylinder is the cone whose apex is at the center of one base of the cylinder and whose base is the other base of the cylinder. By the Pythagorean theorem , the plane located y {\displaystyle y} units above the "equator" intersects the sphere in a circle of radius r 2 − y 2 {\textstyle {\sqrt {r^{2}-y^{2}}}} and area π ( r 2 − y ...

  9. Volume element - Wikipedia

    en.wikipedia.org/wiki/Volume_element

    This fact allows volume elements to be defined as a kind of measure on a manifold. On an orientable differentiable manifold, a volume element typically arises from a volume form: a top degree differential form. On a non-orientable manifold, the volume element is typically the absolute value of a (locally defined) volume form: it defines a 1 ...