Search results
Results from the WOW.Com Content Network
θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile; If y 0 is taken to be zero, meaning that the object is being launched on flat ground, the range of the projectile will simplify to: =
To find the angle giving the maximum height for a given speed calculate the derivative of the maximum height = / with respect to , that is = / which is zero when = / =. So the maximum height H m a x = v 2 2 g {\displaystyle H_{\mathrm {max} }={v^{2} \over 2g}} is obtained when the projectile is fired straight up.
This formula allows one to find the angle of launch needed without the restriction of =. One can also ask what launch angle allows the lowest possible launch velocity. This occurs when the two solutions above are equal, implying that the quantity under the square root sign is zero.
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...
The maximum range condition is obtained at maximum lift/drag ratio (L/DMAX) The maximal total range is the maximum distance an aircraft can fly between takeoff and landing . Powered aircraft range is limited by the aviation fuel energy storage capacity (chemical or electrical) considering both weight and volume limits. [ 1 ]
The Arakelov height on a projective space over the field of algebraic numbers is a global height function with local contributions coming from Fubini–Study metrics on the Archimedean fields and the usual metric on the non-Archimedean fields. [15] [16] It is the usual Weil height equipped with a different metric. [17]
The blue path in this image is an example of a hyperbolic trajectory. A hyperbolic trajectory is depicted in the bottom-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the hyperbolic trajectory is shown in red.
Jurin's law, or capillary rise, is the simplest analysis of capillary action—the induced motion of liquids in small channels [1] —and states that the maximum height of a liquid in a capillary tube is inversely proportional to the tube's diameter.