enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    In general, the yield strength of a material is an adequate indicator of the material's mechanical strength. Considered in tandem with the fact that the yield strength is the parameter that predicts plastic deformation in the material, one can make informed decisions on how to increase the strength of a material depending on its microstructural ...

  3. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  4. Strength of Materials (journal) - Wikipedia

    en.wikipedia.org/wiki/Strength_of_Materials...

    Strength of Materials (Russian: Проблемы прочности) is a bimonthly peer-reviewed scientific journal covering the field of strength of materials and structural elements, mechanics solid deformed body.

  5. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    This material exhibits an ultra-high hardness, higher than any reported ultrafine-grained nickel. The exceptional strength is resulted from the appearance of low-angle grain boundaries, which have low-energy states efficient for enhancing structure stability. Another method to stabilize grain boundaries is the addition of nonmetallic impurities.

  6. List of materials properties - Wikipedia

    en.wikipedia.org/wiki/List_of_materials_properties

    A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.

  7. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    The object is to determine the critical stresses in each part, and compare them to the strength of the material (see strength of materials). For parts that have broken in service, a forensic engineering or failure analysis is performed to identify weakness, where broken parts are analysed for the cause or causes of failure. The method seeks to ...

  8. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    The plastic section modulus is used for materials and structures where limited plastic deformation is acceptable. It represents the section's capacity to resist bending once the material has yielded and entered the plastic range. It is used to determine the plastic, or full, moment strength of a section [1]

  9. Specific strength - Wikipedia

    en.wikipedia.org/wiki/Specific_strength

    The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength.