enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    A primality test is an algorithm for determining whether an input number is prime.Among other fields of mathematics, it is used for cryptography.Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  5. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    The algorithm can be written as follows: Inputs: n: a value to test for primality, n>3; k: a parameter that determines the number of times to test for primality Output: composite if n is composite, otherwise probably prime Repeat k times: Pick a randomly in the range [2, n − 2]

  6. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    Input #1: b, the number of bits of the result Input #2: k, the number of rounds of testing to perform Output: a strong probable prime n while True: pick a random odd integer n in the range [2 b−1, 2 b −1] if the Miller–Rabin test with inputs n and k returns “probably prime” then return n

  7. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    The algorithm can be written in pseudocode as follows: algorithm lucas_primality_test is input: n > 2, an odd integer to be tested for primality. k, a parameter that determines the accuracy of the test. output: prime if n is prime, otherwise composite or possibly composite. determine the prime factors of n−1.

  8. Baillie–PSW primality test - Wikipedia

    en.wikipedia.org/wiki/Baillie–PSW_primality_test

    Optionally, perform trial division to check if n is divisible by a small prime number less than some convenient limit. Perform a base 2 strong probable prime test. If n is not a strong probable prime base 2, then n is composite; quit. Find the first D in the sequence 5, −7, 9, −11, 13, −15, ... for which the Jacobi symbol (D/n) is −1.

  9. Elliptic curve primality - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_primality

    Next we need an algorithm to count the number of points on E. Applied to E, this algorithm (Koblitz and others suggest Schoof's algorithm) produces a number m which is the number of points on curve E over F N, provided N is prime. If the point-counting algorithm stops at an undefined expression this allows to determine a non-trivial factor of N.