enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...

  3. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    The surface area is the total area of each polyhedra's faces. In the case of a pyramid, its surface area is the sum of the area of triangles and the area of the polygonal base. The volume of a pyramid is the one-third product of the base's area and the height.

  4. Surface area - Wikipedia

    en.wikipedia.org/wiki/Surface_area

    A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...

  5. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),

  6. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    Isosceles-triangular area Right-triangular area: Circular area: Quarter-circular area [2] ... Right-rectangular pyramid: a, b = the sides of the base

  7. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    The surface area of a polyhedron is the sum of areas of its faces, for definitions of polyhedra for which the area of a face is well-defined. The geodesic distance between any two points on the surface of a polyhedron measures the length of the shortest curve that connects the two points, remaining within the surface.

  8. Truncated tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_tetrahedron

    Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.

  9. Square pyramid - Wikipedia

    en.wikipedia.org/wiki/Square_pyramid

    A polyhedron's surface area is the sum of the areas of its faces. The surface area of a right square pyramid can be expressed as = +, where and are the areas of one of its triangles and its base, respectively. The area of a triangle is half of the product of its base and side, with the area of a square being the length of the side squared.