enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root.

  3. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Knowing the algebraic and geometric multiplicities of the eigenvalues is not sufficient to determine the Jordan normal form of A. Assuming the algebraic multiplicity m(λ) of an eigenvalue λ is known, the structure of the Jordan form can be ascertained by analyzing the ranks of the powers (A − λI) m(λ).

  4. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    So, except for very low degrees, root finding of polynomials consists of finding approximations of the roots. By the fundamental theorem of algebra, a polynomial of degree n has exactly n real or complex roots counting multiplicities. It follows that the problem of root finding for polynomials may be split in three different subproblems;

  5. Hilbert–Samuel function - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Samuel_function

    This integer is called the multiplicity of the ideal . When I = m {\displaystyle I=m} is the maximal ideal of A {\displaystyle A} , one also says e {\displaystyle e} is the multiplicity of the local ring A {\displaystyle A} .

  6. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.

  7. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The sum of the algebraic multiplicities of all distinct eigenvalues is μ A = 4 = n, the order of the characteristic polynomial and the dimension of A. On the other hand, the geometric multiplicity of the eigenvalue 2 is only 1, because its eigenspace is spanned by just one vector [ 0 1 − 1 1 ] T {\displaystyle {\begin{bmatrix}0&1&-1&1\end ...

  8. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    As R is a homogeneous polynomial in two indeterminates, the fundamental theorem of algebra implies that R is a product of pq linear polynomials. If one defines the multiplicity of a common zero of P and Q as the number of occurrences of the corresponding factor in the product, Bézout's theorem is thus proved.

  9. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    In linear algebra, the minimal polynomial μ A of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μ A. The following three statements are equivalent: λ is a root of μ A, λ is a root of the characteristic polynomial χ A ...