Search results
Results from the WOW.Com Content Network
The nitrogen cycle is an important process in the ocean as well. While the overall cycle is similar, there are different players [40] and modes of transfer for nitrogen in the ocean. Nitrogen enters the water through the precipitation, runoff, or as N 2 from the atmosphere. Nitrogen cannot be utilized by phytoplankton as N
The atmosphere envelops the earth and extends hundreds of kilometres from the surface. It consists mostly of inert nitrogen (78%), oxygen (21%) and argon (0.9%). [4] Some trace gases in the atmosphere, such as water vapour and carbon dioxide, are the gases most important for the workings of the climate system, as they are greenhouse gases which allow visible light from the Sun to penetrate to ...
In the nitrogen cycle, atmospheric nitrogen is converted by plants into usable forms such as ammonia and nitrates through the process of nitrogen fixation. These compounds can be used by other organisms, and nitrogen is returned to the atmosphere through denitrification and other processes.
Approximately 78% of Earth's atmosphere is N gas (N 2), which is an inert compound and biologically unavailable to most organisms.In order to be utilized in most biological processes, N 2 must be converted to reactive nitrogen (Nr), which includes inorganic reduced forms (NH 3 and NH 4 +), inorganic oxidized forms (NO, NO 2, HNO 3, N 2 O, and NO 3 −), and organic compounds (urea, amines, and ...
Atmospheric chemistry is a branch of atmospheric science that studies the chemistry of the Earth's atmosphere and that of other planets. This multidisciplinary approach of research draws on environmental chemistry, physics, meteorology, computer modeling, oceanography, geology and volcanology, climatology and other disciplines to understand both natural and human-induced changes in atmospheric ...
A related project is the Atmospheric Model Intercomparison Project (AMIP) for global coupled ocean-atmosphere general circulation models (GCMs). Coupled models are computer-based models of the Earth's climate, in which different parts (such as atmosphere, oceans, land, ice) are "coupled" together, and interact in simulations. [1]
In its natural state, nitrogen exists primarily as a gas (N2) in the atmosphere, making up about 78% of the air we breathe. Nitrogen finds extensive usage across various sectors, primarily in the agriculture industry, and transportation. Its versatility stems from its ability to form numerous compounds, each with unique properties and applications.
Atmospheric models calculate winds, heat transfer, radiation, relative humidity, and surface hydrology within each grid and evaluate interactions with neighboring points. [1] A general circulation model (GCM) is a type of climate model. It employs a mathematical model of the general circulation of a planetary atmosphere or ocean.