Search results
Results from the WOW.Com Content Network
SETAR models were introduced by Howell Tong in 1977 and more fully developed in the seminal paper (Tong and Lim, 1980). They can be thought of in terms of extension of autoregressive models, allowing for changes in the model parameters according to the value of weakly exogenous threshold variable z t, assumed to be past values of y, e.g. y t-d, where d is the delay parameter, triggering the ...
The Bayesian estimation of FAVAR models helps address the uncertainty in both the latent factors and model parameters, providing more robust inference. [ 11 ] Time-varying parameter FAVAR (TVP-FAVAR) further extends this framework by allowing the model parameters to evolve over time, capturing potential structural changes in the economy.
There are four sources of uncertainty regarding predictions obtained in this manner: (1) uncertainty as to whether the autoregressive model is the correct model; (2) uncertainty about the accuracy of the forecasted values that are used as lagged values in the right side of the autoregressive equation; (3) uncertainty about the true values of ...
The model consists of 2 autoregressive (AR) parts linked by the transition function. The model is usually referred to as the STAR(p) models proceeded by the letter describing the transition function (see below) and p is the order of the autoregressive part. Most popular transition function include exponential function and first and second-order ...
A threshold model used in toxicology posits that anything above a certain dose of a toxin is dangerous, and anything below it safe. This model is usually applied to non-carcinogenic health hazards. Edward J. Calabrese and Linda A. Baldwin wrote: The threshold dose-response model is widely viewed as the most dominant model in toxicology. [6]
This results in a nonparametric modelling scheme, which allows for: (i) advanced robustness to overfitting, since the model marginalises over its parameters to perform inference, under a Bayesian inference rationale; and (ii) capturing highly-nonlinear dependencies without increasing model complexity. [citation needed]
These models and extensions to include moving average spline models are described in "Univariate Time Series Modelling and Forecasting using TSMARS: A study of threshold time series autoregressive, seasonal and moving average models using TSMARS". Bayesian MARS (BMARS) uses the same model form, but builds the model using a Bayesian approach. It ...
The notation ARMAX(p, q, b) refers to a model with p autoregressive terms, q moving average terms and b exogenous inputs terms. The last term is a linear combination of the last b terms of a known and external time series d t {\displaystyle d_{t}} .