Search results
Results from the WOW.Com Content Network
The same goes for shear viscosity. For a Newtonian fluid the shear viscosity is a pure fluid property, but for a non-Newtonian fluid it is not a pure fluid property due to its dependence on the velocity gradient. Neither shear nor volume viscosity are equilibrium parameters or properties, but transport properties.
How much the volume viscosity contributes to the flow characteristics in e.g. a choked flow such as convergent-divergent nozzle or valve flow is not well known, but the shear viscosity is by far the most utilized viscosity coefficient. The volume viscosity will now be abandoned, and the rest of the article will focus on the shear viscosity.
Trouton's ratio is the ratio of extensional viscosity to shear viscosity. For a Newtonian fluid, the Trouton ratio is 3. [21] [22] Shear-thinning liquids are very commonly, but misleadingly, described as thixotropic. [23] Viscosity may also depend on the fluid's physical state (temperature and pressure) and other, external, factors.
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water. Viscosity is measured using a viscometer. Measured values span several orders of magnitude.
The viscosity of a non-Newtonian fluid is defined by a power law: [5] = ˙ where η is the viscosity after shear is applied, η 0 is the initial viscosity, γ is the shear rate, and if <, the fluid is shear thinning, >, the fluid is shear thickening,
In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different. The fluid can even exhibit time-dependent viscosity. Therefore ...
The zero-trace part E s of E is a symmetric 3 × 3 tensor that describes the rate at which the medium is being deformed by shearing, ignoring any changes in its volume. Thus the zero-trace part ε s of ε is the familiar viscous shear stress that is associated to progressive shearing deformation.
A single viscosity measurement at a constant speed in a typical viscometer is a measurement of the instrument viscosity of a fluid (not the apparent viscosity). In the case of non-Newtonian fluids, measurement of apparent viscosity without knowledge of the shear rate is of limited value: the measurement cannot be compared to other measurements if the speed and geometry of the two instruments ...