Search results
Results from the WOW.Com Content Network
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail.. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic.
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...
The one-tailed critical value C α ≈ 1.645 corresponds to the chosen significance level. The critical region [C α, ∞) is realized as the tail of the standard normal distribution. Critical value s of a statistical test are the boundaries of the acceptance region of the test. [41]
Because the square of a standard normal distribution is the chi-squared distribution with one degree of freedom, the probability of a result such as 1 heads in 10 trials can be approximated either by using the normal distribution directly, or the chi-squared distribution for the normalised, squared difference between observed and expected value.
Using one of these sampling distributions, it is possible to compute either a one-tailed or two-tailed p-value for the null hypothesis that the coin is fair. The test statistic in this case reduces a set of 100 numbers to a single numerical summary that can be used for testing.
The block chi-square, 9.562, tests whether either or both of the variables included in this block (GPA and TUCE) have effects that differ from zero. This is the equivalent of an incremental F test, i.e. it tests H 0: β GPA = β TUCE = 0. The model chi-square, 15.404, tells you whether any of the three Independent Variabls has significant effects.
As a result, the null hypothesis can be rejected with a less extreme result if a one-tailed test was used. [40] The one-tailed test is only more powerful than a two-tailed test if the specified direction of the alternative hypothesis is correct. If it is wrong, however, then the one-tailed test has no power.