Search results
Results from the WOW.Com Content Network
Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be 1 / 2 . In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1 / 2 + yi where y is a real number.
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
Zeta function of an incidence algebra, a function that maps every interval of a poset to the constant value 1. Despite not resembling a holomorphic function, the special case for the poset of integer divisibility is related as a formal Dirichlet series to the Riemann zeta function. Zeta function of an operator or spectral zeta function
This sum conjecture is also known as Sum Theorem, and it may be expressed as follows: the Riemann zeta value of an integer n ≥ 2 is equal to the sum of all the valid (i.e. with s 1 > 1) MZVs of the partitions of length k and weight n, with 1 ≤ k ≤ n − 1. In formula: [3]
A Gram point is a point on the critical line 1/2 + it where the zeta function is real and non-zero. Using the expression for the zeta function on the critical line, ζ(1/2 + it) = Z(t)e − iθ(t), where Hardy's function, Z, is real for real t, and θ is the Riemann–Siegel theta function, we see that zeta is real when sin(θ(t)) = 0.
Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas (Various Observations about Infinite Series), published by St Petersburg Academy in 1737. [1] [2]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
where ζ is the Riemann zeta function. It has an approximate value of [1] ζ(3) ≈ 1.20205 69031 59594 28539 97381 61511 44999 07649 86292 … (sequence A002117 in the OEIS). It is named after Roger Apéry, who proved that it is an irrational number.