enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expansion of the universe - Wikipedia

    en.wikipedia.org/wiki/Expansion_of_the_universe

    It does not follow, however, that light travels a distance ct in a time t, as the red worldline illustrates. While it always moves locally at c, its time in transit (about 13 billion years) is not related to the distance traveled in any simple way, since the universe expands as the light beam traverses space and time. The distance traveled is ...

  3. Accelerating expansion of the universe - Wikipedia

    en.wikipedia.org/wiki/Accelerating_expansion_of...

    Spectral lines of their light can be used to determine their redshift. For supernovae at redshift less than around 0.1, or light travel time less than 10 percent of the age of the universe, this gives a nearly linear distance–redshift relation due to Hubble's law. At larger distances, since the expansion rate of the universe has changed over ...

  4. Light echo - Wikipedia

    en.wikipedia.org/wiki/Light_echo

    Because this light has only travelled forward as well as away from the star, it produces the illusion of an echo expanding faster than the speed of light. [ 3 ] In the first illustration above, light following path A is emitted from the original source and arrives at the observer first.

  5. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    Another quantum effect that predicts the occurrence of faster-than-light speeds is called the Hartman effect: under certain conditions the time needed for a virtual particle to tunnel through a barrier is constant, regardless of the thickness of the barrier. [50] [51] This could result in a virtual particle crossing a large gap faster than ...

  6. Faster-than-light - Wikipedia

    en.wikipedia.org/wiki/Faster-than-light

    Faster-than-light (superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light (c). The special theory of relativity implies that only particles with zero rest mass (i.e., photons ) may travel at the speed of light, and that nothing may travel faster.

  7. Cosmological horizon - Wikipedia

    en.wikipedia.org/wiki/Cosmological_horizon

    The particle horizon, also called the cosmological horizon, the comoving horizon, or the cosmic light horizon, is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. It represents the boundary between the observable and the unobservable regions of the universe, so its distance at ...

  8. Redshift - Wikipedia

    en.wikipedia.org/wiki/Redshift

    Describing the cosmological expansion origin of redshift, cosmologist Edward Robert Harrison said, "Light leaves a galaxy, which is stationary in its local region of space, and is eventually received by observers who are stationary in their own local region of space. Between the galaxy and the observer, light travels through vast regions of ...

  9. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    Formally, c is a conversion factor for changing the unit of time to the unit of space. [4] This makes it the only speed which does not depend either on the motion of an observer or a source of light and / or gravity. Thus, the speed of "light" is also the speed of gravitational waves, and further the speed of any massless particle.