enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" ( lattice based ) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

  3. Valuation of options - Wikipedia

    en.wikipedia.org/wiki/Valuation_of_options

    See Asset pricing for a listing of the various models here. As regards (2), the implementation, the most common approaches are: Closed form, analytic models: the most basic of these are the Black–Scholes formula and the Black model. Lattice models (Trees): Binomial options pricing model; Trinomial tree; Monte Carlo methods for option pricing

  4. Lattice model (finance) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(finance)

    The simplest lattice model is the binomial options pricing model; [7] the standard ("canonical" [8]) method is that proposed by Cox, Ross and Rubinstein (CRR) in 1979; see diagram for formulae. Over 20 other methods have been developed, [ 9 ] with each "derived under a variety of assumptions" as regards the development of the underlying's price ...

  5. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    Finite difference methods were first applied to option pricing by Eduardo Schwartz in 1977. [2] [3]: 180 In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations.

  6. Option (finance) - Wikipedia

    en.wikipedia.org/wiki/Option_(finance)

    The model starts with a binomial tree of discrete future possible underlying stock prices. By constructing a riskless portfolio of an option and stock (as in the Black–Scholes model) a simple formula can be used to find the option price at each node in the tree.

  7. Ho–Lee model - Wikipedia

    en.wikipedia.org/wiki/Ho–Lee_model

    In financial mathematics, the Ho-Lee model is a short-rate model widely used in the pricing of bond options, swaptions and other interest rate derivatives, and in modeling future interest rates. [1]: 381 It was developed in 1986 by Thomas Ho [2] and Sang Bin Lee. [3] Under this model, the short rate follows a normal process:

  8. Option style - Wikipedia

    en.wikipedia.org/wiki/Option_style

    In general, no corresponding formula exist for American options, but a choice of methods to approximate the price are available (for example Roll-Geske-Whaley, Barone-Adesi and Whaley, Bjerksund and Stensland, binomial options model by Cox-Ross-Rubinstein, Black's approximation and others; there is no consensus on which is preferable). [1]

  9. Risk-neutral measure - Wikipedia

    en.wikipedia.org/wiki/Risk-neutral_measure

    In a more realistic model, such as the Black–Scholes model and its generalizations, our Arrow security would be something like a double digital option, which pays off $1 when the underlying asset lies between a lower and an upper bound, and $0 otherwise. The price of such an option then reflects the market's view of the likelihood of the spot ...