Search results
Results from the WOW.Com Content Network
An audio analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more.
In audio systems, lower distortion means that the components in a loudspeaker, amplifier or microphone or other equipment produce a more accurate reproduction of an audio recording. In radio communications, devices with lower THD tend to produce less unintentional interference with other electronic devices.
Electrostatic speakers can have lower harmonic distortion but suffer higher intermodulation distortion. 3% distortion residue corresponds to 1 or 2% total harmonic distortion. Professional monitors may maintain modest distortion up to around 110 dB SPL at 1 m, but almost all domestic speaker systems distort badly above 100 dB SPL.
This will cause the devices to drift apart over time. The effects of this can vary. If one digital device is used to monitor another digital device, this will cause dropouts or distortion in the audio, as one device will be producing more or less data than the other per unit time.
Objectivists claim that digital sound can have higher fidelity than analog sound because it lacks clicks, pops, wow, flutter, audio feedback, degradation, generational loss, and rumble, has a higher signal-to-noise ratio, has a wider dynamic range, has less total harmonic distortion, and has a flatter and more extended frequency response.
A total harmonic distortion analyzer calculates the total harmonic content of a sinewave with some distortion, expressed as total harmonic distortion (THD). A typical application is to determine the THD of an amplifier by using a very-low-distortion sinewave input and examining the output.
Dynamic range in analog audio is the difference between low-level thermal noise in the electronic circuitry and high-level signal saturation resulting in increased distortion and, if pushed higher, clipping. [23] Multiple noise processes determine the noise floor of a system.
An electronic device can be tested by applying a single frequency to its input and measuring the response at its output. If there is any non-linearity in the device, this will cause harmonic distortion at the output. This kind of distortion consists of whole-number multiples of the applied signal frequency, as well as the original frequency ...