Search results
Results from the WOW.Com Content Network
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface. The rotation of a star produces an equatorial bulge due to centrifugal force. As stars are not solid bodies, they can also undergo differential rotation.
Observations of the rotation curve of spirals, however, do not bear this out. Rather, the curves do not decrease in the expected inverse square root relationship but are "flat", i.e. outside of the central bulge the speed is nearly a constant (the solid line in Fig. 1).
For this reason, to simplify the description of Earth's orientation in astronomy and geodesy, it was conventional to chart the positions of the stars in the sky according to right ascension and declination, which are based on a frame of reference that follows Earth's precession, and to keep track of Earth's rotation, through sidereal time ...
Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.
Here, the ratio of the rotation period of a body to its own orbital period is some simple fraction different from 1:1. A well known case is the rotation of Mercury, which is locked to its own orbit around the Sun in a 3:2 resonance. [2] This results in the rotation speed roughly matching the orbital speed around perihelion. [14]
A celestial object's axial tilt indicates whether the object's rotation is prograde or retrograde. Axial tilt is the angle between an object's rotation axis and a line perpendicular to its orbital plane passing through the object's centre. An object with an axial tilt up to 90 degrees is rotating in the same direction as its primary.
An example of precession and nutation is the variation over time of the orientation of the axis of rotation of the Earth. This is important because the most commonly used frame of reference for measurement of the positions of astronomical objects is the Earth's equator — the so-called equatorial coordinate system .