enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    If the edge length of a regular dodecahedron is , the radius of a circumscribed sphere (one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere (tangent to each of the regular dodecahedron's faces), and the midradius (one that touches the middle of each edge) are: [21] =, =, =. Given a regular dodecahedron ...

  3. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...

  4. Dodecahedral bipyramid - Wikipedia

    en.wikipedia.org/wiki/Dodecahedral_bipyramid

    In 4-dimensional geometry, the dodecahedral bipyramid is the direct sum of a dodecahedron and a segment, {5,3} + { }. Each face of a central dodecahedron is attached with two pentagonal pyramids, creating 24 pentagonal pyramidal cells, 72 isosceles triangular faces, 70 edges, and 22 vertices.

  5. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  6. Vertex configuration - Wikipedia

    en.wikipedia.org/wiki/Vertex_configuration

    A vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. This vertex figure has a 3-dimensional structure since the faces are not in the same plane for polyhedra, but for vertex-uniform polyhedra all the neighboring vertices are in the same plane and so this plane projection can be used to visually represent the vertex configuration.

  7. Icosian calculus - Wikipedia

    en.wikipedia.org/wiki/Icosian_Calculus

    The symbols of the icosian calculus correspond to moves between vertices on a dodecahedron. (Hamilton originally thought in terms of moves between the faces of an icosahedron, which is equivalent by duality. This is the origin of the name "icosian". [3])

  8. Pentakis dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Pentakis_dodecahedron

    The pentakis dodecahedron in a model of buckminsterfullerene: each (spherical) surface segment represents a carbon atom, and if all are replaced with planar faces, a pentakis dodecahedron is produced. Equivalently, a truncated icosahedron is a model of buckminsterfullerene, with each vertex representing a carbon atom.

  9. Icosian game - Wikipedia

    en.wikipedia.org/wiki/Icosian_game

    It involves finding a Hamiltonian cycle on a dodecahedron, a polygon using edges of the dodecahedron that passes through all its vertices. Hamilton's invention of the game came from his studies of symmetry, and from his invention of the icosian calculus, a mathematical system describing the symmetries of the dodecahedron.