Search results
Results from the WOW.Com Content Network
General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU).
In the more general subject of "geometric deep learning", certain existing neural network architectures can be interpreted as GNNs operating on suitably defined graphs. [12] A convolutional neural network layer, in the context of computer vision , can be considered a GNN applied to graphs whose nodes are pixels and only adjacent pixels are ...
The product line is intended to bridge the gap between GPUs and AI accelerators using specific features for deep learning workloads. [4] The initial Pascal-based DGX-1 delivered 170 teraflops of half precision processing, [ 5 ] while the Volta-based upgrade increased this to 960 teraflops .
Features include mixed precision training, single-GPU, multi-GPU, and multi-node training as well as custom model parallelism. The DeepSpeed source code is licensed under MIT License and available on GitHub. [5] The team claimed to achieve up to a 6.2x throughput improvement, 2.8x faster convergence, and 4.6x less communication. [6]
MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes Microsoft Cognitive ...
AlexNet is highly influential, resulting in much subsequent work in using CNNs for computer vision and using GPUs to accelerate deep learning. As of early 2025, the AlexNet paper has been cited over 168,000 times according to Google Scholar.
LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [ 4 ] [ 5 ] It is based on decision tree algorithms and used for ranking , classification and other machine learning tasks.
Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]