Search results
Results from the WOW.Com Content Network
Pile integrity testing using low-strain tests such as the TDR (Transient Dynamic Response) method, is a rapid way of assessing the continuity and integrity of concrete piled foundations. The test measures: pile length, or depth to anomalies; pile head stiffness; pile shaft mobility, which is dependent on pile section and concrete properties
Both the diameter of the pile and the depth of the pile are highly specific to the ground conditions, loading conditions, and nature of the project. Pile depths may vary substantially across a project if the bearing layer is not level. Drilled piles can be tested using a variety of methods to verify the pile integrity during installation.
In geotechnical civil engineering, the p–y is a method of analyzing the ability of deep foundations to resist loads applied in the lateral direction. This method uses the finite difference method and p-y graphs to find a solution.
The Oliver–Pharr nonlinear curve fit method to the unloading curve data where is the depth variable, is the final depth and and are constants and coefficients. The software must use a nonlinear convergence method to solve for k {\displaystyle k} , h f {\displaystyle h_{\text{f}}} and m {\displaystyle m} that best fits the unloading data.
Meyerhof (1951, 1963) proposed a bearing-capacity equation similar to that of Terzaghi's but included a shape factor s-q with the depth term Nq. He also included depth factors and inclination factors. [Note: Meyerhof re-evaluated N_q based on a different assumption from Terzaghi and found N_q = ( 1 + sin phi) exp (pi tan phi ) / (1 - sin phi).
The soil response for each pile segment is modeled as viscoelastic-plastic. The method was first developed in the 1950s by E.A. Smith of the Raymond Pile Driving Company. Wave equation analysis of piles has seen many improvements since the 1950s such as including a thermodynamic diesel hammer model and residual stress. Commercial software ...
The sample tube is driven a total of 45 cm into the ground and the number of blows needed for the tube to penetrate each 15 cm (6 in) interval up to a depth of 45 cm (18 in) is recorded. The sum of the number of blows required for the second and third 15 cm (6 in) intervals of penetration is termed the "standard penetration resistance" or the ...
An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...