Search results
Results from the WOW.Com Content Network
The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a circular tube.
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
An interesting phenomena, capillary rise of water (as pictured to the right) provides a good example of how these properties come together to drive flow through a capillary tube and how these properties are measured in a system. There are two general equations that describe the force up and force down relationship of two fluids in equilibrium.
Jurin's law, or capillary rise, is the simplest analysis of capillary action—the induced motion of liquids in small channels [1] —and states that the maximum height of a liquid in a capillary tube is inversely proportional to the tube's diameter.
As all blood vessels allow a degree of protein leak , true equilibrium across the membrane cannot occur and there is a continuous flow of water with small solutes. The molecular sieving properties of the capillary wall reside in a recently-discovered endocapillary layer rather than in the dimensions of pores through or between the endothelial ...
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
Flow through the pores in an oil reservoir has capillary number values in the order of 10 −6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity. [ 4 ] The capillary number plays a role in the dynamics of capillary flow ; in particular, it governs the dynamic contact angle of a flowing droplet at ...
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. [1] It is a quasilinear partial differential equation ; its analytical solution is often limited to specific initial and boundary conditions. [ 2 ]