enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schläfli symbol - Wikipedia

    en.wikipedia.org/wiki/Schläfli_symbol

    Regular star polygons are not convex, and their Schläfli symbols {p / q} contain irreducible fractions p / q, where p is the number of vertices, and q is their turning number. Equivalently, {p / q} is created from the vertices of {p}, connected every q. For example, {5 ⁄ 2} is a pentagram; {5 ⁄ 1} is a pentagon.

  3. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2]

  4. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...

  5. 120-cell - Wikipedia

    en.wikipedia.org/wiki/120-cell

    Net. In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C 120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron [1] and hecatonicosahedroid.

  6. Small stellated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Small_stellated_dodecahedron

    3D model of a small stellated dodecahedron. In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {5 ⁄ 2,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

  7. Dodecahedral bipyramid - Wikipedia

    en.wikipedia.org/wiki/Dodecahedral_bipyramid

    In 4-dimensional geometry, the dodecahedral bipyramid is the direct sum of a dodecahedron and a segment, {5,3} + { }. Each face of a central dodecahedron is attached with two pentagonal pyramids, creating 24 pentagonal pyramidal cells, 72 isosceles triangular faces, 70 edges, and 22 vertices.

  8. Icosian calculus - Wikipedia

    en.wikipedia.org/wiki/Icosian_Calculus

    The symbols of the icosian calculus correspond to moves between vertices on a dodecahedron. (Hamilton originally thought in terms of moves between the faces of an icosahedron, which is equivalent by duality. This is the origin of the name "icosian". [3])

  9. Vertex configuration - Wikipedia

    en.wikipedia.org/wiki/Vertex_configuration

    A vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. This vertex figure has a 3-dimensional structure since the faces are not in the same plane for polyhedra, but for vertex-uniform polyhedra all the neighboring vertices are in the same plane and so this plane projection can be used to visually represent the vertex configuration.