enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.

  3. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    algebraically: more precisely, they can be expressed by a cubic formula involving the four coefficients, the four basic arithmetic operations, square roots, and cube roots. (This is also true of quadratic (second-degree) and quartic (fourth-degree) equations, but not for higher-degree equations, by the Abel–Ruffini theorem.) trigonometrically

  4. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points , that is the points where the slope of the function is zero. [ 2 ]

  5. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full period centered at the origin. The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations.

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...

  7. Divided differences - Wikipedia

    en.wikipedia.org/wiki/Divided_differences

    This is known as Opitz' formula. [2] [3] Now consider increasing the degree of to infinity, i.e. turn the Taylor polynomial into a Taylor series. Let be a function which corresponds to a power series.

  8. Jet (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Jet_(mathematics)

    In mathematics, the jet is an operation that takes a differentiable function f and produces a polynomial, the Taylor polynomial (truncated Taylor series) of f, at each point of its domain. Although this is the definition of a jet, the theory of jets regards these polynomials as being abstract polynomials rather than polynomial functions.

  9. Cubic plane curve - Wikipedia

    en.wikipedia.org/wiki/Cubic_plane_curve

    A selection of cubic curves. Click the image to see information page for details. In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation