enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Here () denotes the ()-orthogonal projection of onto the ()-orthogonal linear subspace to () (). Mean curvature of an immersion ... in the hypersurface case is

  4. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    A smooth quadric over a field k is a projective homogeneous variety for the orthogonal group (and for the special orthogonal group), viewed as linear algebraic groups over k. Like any projective homogeneous variety for a split reductive group, a split quadric X has an algebraic cell decomposition, known as the Bruhat decomposition. (In ...

  5. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...

  6. Complex lamellar vector field - Wikipedia

    en.wikipedia.org/wiki/Complex_lamellar_vector_field

    In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl.

  7. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    Considered extrinsically, as a hypersurface embedded in ⁠ (+) ⁠-dimensional Euclidean space, an ⁠ ⁠-sphere is the locus of points at equal distance (the radius) from a given center point. Its interior , consisting of all points closer to the center than the radius, is an ⁠ ( n + 1 ) {\displaystyle (n+1)} ⁠ -dimensional ball .

  8. Rindler coordinates - Wikipedia

    en.wikipedia.org/wiki/Rindler_coordinates

    The orthogonal spatial hyperslices are =; these appear as horizontal half-planes in the Rindler chart and as half-planes through = = in the Cartesian chart (see the figure above). Setting d t = 0 {\displaystyle dt=0} in the line element, we see that these have the ordinary Euclidean geometry, d σ 2 = d x 2 + d y 2 + d z 2 , ∀ x > 0 , ∀ y ...

  9. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...