Search results
Results from the WOW.Com Content Network
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
C-command is a relation between tree nodes, as defined by Tanya Reinhart. [3] Kayne uses a simple definition of c-command based on the "first node up". However, the definition is complicated by his use of a "segment/category" distinction. Two directly connected nodes that have the same label are "segments" of a single "category".
A binary relation on a set is formally defined as a set of ordered pairs (,) of elements of , and (,) is often abbreviated as .. A relation is reflexive if holds for every element ; it is transitive if imply for all ,,; it is antisymmetric if imply = for all ,; and it is a connex relation if holds for all ,.
For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric for all x, y ∈ X, if xRy then not yRx. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [12] For example, > is an asymmetric relation, but ≥ is not.
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
For example, "is a blood relative of" is a symmetric relation, because x is a blood relative of y if and only if y is a blood relative of x. Antisymmetric for all x, y ∈ X, if xRy and yRx then x = y. For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [8] Asymmetric
On the 2-element set X = { 0, 1 }, e.g. the relation xRy defined by y=1 is connected, right Euclidean, and antisymmetric, and xRy defined by x=1 is connected, left Euclidean, and antisymmetric. A relation R on a set X is right Euclidean if, and only if, the restriction R ′ := R| ran(R) is an equivalence and for each x in X\ran(R), all ...