Search results
Results from the WOW.Com Content Network
These are four valence bond structures that can contribute to the VBT description of bonding in a hydrogen molecule. The Heitler-London (covalent) structure is the largest contributor, while the ionic structures are minor contributors. The triplet structure is a negligible contributor.
It is a "chemistry aware" computer programming language with over 1,000 specific functions for analyzing and manipulating chemical structures and related molecular objects. SVL is a concise, high-level language whose programs are typically 10 times smaller than their equivalent when compared to C or Fortran .
In computer programming, a scientific programming language can refer to two degrees of the same concept. In a wide sense, a scientific programming language is a programming language that is used widely for computational science and computational mathematics. In this sense, C/C++ and Python can be considered scientific programming languages.
Elixir is a high-level functional programming language based on the Erlang VM. Its machine-learning ecosystem includes Nx for computing on CPUs and GPUs, Bumblebee and Axon for serving and training models, Broadway for distributed processing pipelines, Membrane for image and video processing, Livebook for prototyping and publishing notebooks ...
Furthermore, the Ge–Ge bond is primarily covalent, whereas the Ge–M bond usually has an equal mix of covalent and ionic nature. Exceptions to this are Cr, Mn, and Cu, where the ionic component is dominant because of smaller overlap with the 4s orbital of the M atom, leading to less stability. [ 19 ]
Quantum Computation Language (QCL) is one of the first implemented quantum programming languages. [1] The most important feature of QCL is the support for user-defined operators and functions. Its syntax resembles the syntax of the C programming language and its classical data types are similar to primitive data types in C. One can combine ...
Covalent and ionic bonding form a continuum, with ionic character increasing with increasing difference in the electronegativity of the participating atoms. Covalent bonding corresponds to sharing of a pair of electrons between two atoms of essentially equal electronegativity (for example, C–C and C–H bonds in aliphatic hydrocarbons).
Thus, the term "ionic bonding" is given when the ionic character is greater than the covalent character – that is, a bond in which there is a large difference in electronegativity between the two atoms, causing the bonding to be more polar (ionic) than in covalent bonding where electrons are shared more equally.