Search results
Results from the WOW.Com Content Network
Quantum Computation Language (QCL) is one of the first implemented quantum programming languages. [1] The most important feature of QCL is the support for user-defined operators and functions. Its syntax resembles the syntax of the C programming language and its classical data types are similar to primitive data types in C. One can combine ...
These are four valence bond structures that can contribute to the VBT description of bonding in a hydrogen molecule. The Heitler-London (covalent) structure is the largest contributor, while the ionic structures are minor contributors. The triplet structure is a negligible contributor.
Q Language is the second implemented imperative quantum programming language. [52] Q Language was implemented as an extension of C++ programming language. It provides classes for basic quantum operations like QHadamard, QFourier, QNot, and QSwap, which are derived from the base class Qop. New operators can be defined using C++ class mechanism.
Furthermore, the Ge–Ge bond is primarily covalent, whereas the Ge–M bond usually has an equal mix of covalent and ionic nature. Exceptions to this are Cr, Mn, and Cu, where the ionic component is dominant because of smaller overlap with the 4s orbital of the M atom, leading to less stability. [ 19 ]
It is a "chemistry aware" computer programming language with over 1,000 specific functions for analyzing and manipulating chemical structures and related molecular objects. SVL is a concise, high-level language whose programs are typically 10 times smaller than their equivalent when compared to C or Fortran .
Thus, the term "ionic bonding" is given when the ionic character is greater than the covalent character – that is, a bond in which there is a large difference in electronegativity between the two atoms, causing the bonding to be more polar (ionic) than in covalent bonding where electrons are shared more equally.
In computer programming, a scientific programming language can refer to two degrees of the same concept. In a wide sense, a scientific programming language is a programming language that is used widely for computational science and computational mathematics. In this sense, C/C++ and Python can be considered scientific programming languages.
In inorganic chemistry, Fajans' rules, formulated by Kazimierz Fajans in 1923, [1] [2] [3] are used to predict whether a chemical bond will be covalent or ionic, and depend on the charge on the cation and the relative sizes of the cation and anion. They can be summarized in the following table: