Search results
Results from the WOW.Com Content Network
Ocean surface currents Distinctive white lines trace the flow of surface currents around the world. Visualization showing global ocean currents from January 1, 2010, to December 31, 2012, at sea level, then at 2,000 m (6,600 ft) below sea level Animation of circulation around ice shelves of Antarctica
Marine chemistry, also known as ocean chemistry or chemical oceanography, is the study of the chemical composition and processes of the world’s oceans, including the interactions between seawater, the atmosphere, the seafloor, and marine organisms. [2]
Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.
A geostrophic current may also be thought of as a rotating shallow water wave with a frequency of zero. The principle of geostrophy or geostrophic balance is useful to oceanographers because it allows them to infer ocean currents from measurements of the sea surface height (by combined satellite altimetry and gravimetry ) or from vertical ...
Oceanography (from Ancient Greek ὠκεανός (ōkeanós) 'ocean' and γραφή (graphḗ) 'writing'), also known as oceanology, sea science, ocean science, and marine science, is the scientific study of the ocean, including its physics, chemistry, biology, and geology.
A crucial system of ocean currents may already be on course to collapse with devastating implications for sea level rise global weather — leading temperatures to plunge dramatically in some ...
Ocean currents are primarily horizontal water movements that have different origins such as tides for tidal currents, or wind and waves for surface currents. Tidal currents are in phase with the tide, hence are quasiperiodic; associated with the influence of the moon and sun pull on the ocean water.
An ocean current is generated by the forces such as breaking waves, temperature and salinity differences, wind, Coriolis effect, and tides caused by the gravitational pull of celestial bodies. In addition, the physical properties in a pycnocline driven by density gradients also affect the flows and vertical profiles in the ocean. These changes ...